- мультипликативная норма
- мультиплікати́вна но́рма
Русско-украинский политехнический словарь. 2013.
Русско-украинский политехнический словарь. 2013.
Норма алгебраического числа — теоретико числовая функция, норма, определённая в конечном алгебраическом расширении поля. Норма алгебраического числа равна произведению всех корней минимального многочлена данного числа. Норма отображает кольцо целых элементов расширения поля в … Википедия
Мультипликативная группа поля — Для общего описания теории групп см. Группа (математика) и Теория групп. Курсив обозначает ссылку на этот словарь. # А Б В Г Д Е Ё Ж З И Й К Л М Н О П Р С Т У … Википедия
Норма группы — Для общего описания теории групп см. Группа (математика) и Теория групп. Курсив обозначает ссылку на этот словарь. # А Б В Г Д Е Ё Ж З И Й К Л М Н О П Р С Т У … Википедия
Теорема Гильберта 90 — одно из основных утверждений для конечных циклических расширений Галуа EÉK. Содержание 1 Мультипликативная форма 2 Доказательство … Википедия
Модель Солоу — Неоклассическая модель экономического роста Роберта Солоу основывается на производственной функции Кобба Дугласа. Основное отличие модели Солоу от производственной функции заключается в том, что автор вводит технический прогресс как фактор… … Википедия
Функциональный анализ (математ.) — Функциональный анализ, часть современной математики, главной задачей которой является изучение бесконечномерных пространств и их отображений. Наиболее изучены линейные пространства и линейные отображения. Для Ф. а. характерно сочетание методов… … Большая советская энциклопедия
Функциональный анализ — I Функциональный анализ часть современной математики, главной задачей которой является изучение бесконечномерных пространств и их отображений. Наиболее изучены линейные пространства и линейные отображения. Для Ф. а. характерно сочетание… … Большая советская энциклопедия
ГИЛЬБЕРТА ТЕОРИЯ — 1) Г. т. о базисе: если А коммутативное нётерово кольцо и кольцо многочленов от с коэффициентами в А, то и нётерово кольцо. В частности, в кольце многочленов от конечного числа переменных над полем или над кольцом целых чисел любой идеал… … Математическая энциклопедия
ИДЕЛЬ — обратимый элемент кольца аделей. Совокупность всех И. образует по умножению группу, наз. группой иделей. Элементами группы И. поля рациональных чисел являются последовательности вида где ненулевое действительное число, а р отличное от нуля р… … Математическая энциклопедия
Словарь терминов теории групп — Для общего ознакомления с теорией групп см. Группа (математика) и Теория групп. Курсив обозначает ссылку на этот словарь. # А Б В Г Д Е Ё Ж З И К Л М Н О П Р … Википедия
Изоморфизм групп — Для общего описания теории групп см. Группа (математика) и Теория групп. Курсив обозначает ссылку на этот словарь. # А Б В Г Д Е Ё Ж З И Й К Л М Н О П Р С Т У … Википедия